MGH Microarray Oligonucleotide Set NHLBI- Program in Genomics Application

Mason W. Freeman, M.D.

Lipid Metabolism Unit

Massachusetts General Hospital

Oligonucleotide choices

- Most oligos have been selected at 3' UTR
 - Oligo dT priming of RNA populations
 - Sequence divergence is typically greater in this region
 - However, 3' UTR variability is substantial
 - Tools for predicting prevalence of alternative 3' ends are still primitive
- 5' ends also have drawbacks
 - Transcription units lacking TATA boxes have end heterogeneity
 - Estimates of the distribution of 5' ends are rare
 - As most investigators want to use microarray profiling to serve as a surrogate for assaying protein prevalence, coding regions are likely to be best surrogate

Random priming of RNA

- Permits detection of coding region isoform differences
- Will favor 5' sequences in detection, as primer extension is always toward the 5' end
- ? Impact of priming on non mRNA species

Oligonucleotide Selection Algorithm

eation of an oligo database containing all possible 10-men

```
A Gene Index = 1000

gtcattgatgaagcgcattgtgtgtgtcagtggggtc......atgattttcgtcaaaaaagtagatttgg

gtcattgatg → (1000,1), (343, 22), (4442, 201), (4599, 890), (18949,1900), ...

tcattgatga → (1000,2), (10225, 455), (14567, 890), (20021,12), ...

cattgatgaa → (1000,3), (23,444), (2265, 211), (7895, 2110), ...

attgatgaag → (1000,4), (6679,3451), ...

ttgatgaagc → (1000,5), (7865, 67), ...

tgatgaagcg → (1000,6), (4599,895), (9899,22), ...

....
```

Effect of exclusion length on number of failed oligos

Effect of probe length on ability to pick unique oligos

BLAST Score and unique oligos

Maximum Base Pairing and Unique Oligos

Screening parameters and oligo failures

Oligonucleotide generation

- 70 mers synthesized at MGH and UTSW
- Quality control measures in DNA synthesis
 - Oligonucleotide OD
 - First and last trityl
 - Capillary electrophoresis
- 5' amino linker for covalent coupling
 - Terminal deoxynucleotide transferase assay
 - Random nine-mer hybridization

Oligonucleotide Quality Control Scheme

DNA synthesis on 30 nmol universal support

Measure last detritylation prior to linker coupling

Coupling efficiency > 99%

Coupling efficiency ≥ 99%

LIMS determination

After deprotection and desalting, molar amount o DNA is calculated by OD measurement at A260

An oligonucleotide passes QC if:

- the amount of DNA is 80% of the expected value at a 99% coupling efficiency
- 2.) the CE demonstrates that the full-length integrated peak area is at least 50% of the total peak area
- 3.) no other single peak area is 20% of the total peak

Probe Quality Control by Capillary Electrophoresis

pass

fail

CE analysis of equal molar mixture of 70-mer with and without C6-amino linker

Approximately 20 second differential in retention time

Chemical Structure of the C6-amino linker

- 1) Linker is added at the end of synthesis process
- 2) Oligo covalently attaches to slide surface
- 3) Attachment is to N-hydroxysuccinimde surface
- 4) Chemistry compatible with any NH₂ attack on coated slide surface

dT labeling of probes at 3'-termini as print QC metho

- After post-processing, slide 1 and 100 of the print-run are QC'd.
- Terminal deoxynucleotidyl transfer (24 units, 12 units/μL, Amersham), 2 μM Cy3-dCTP (Amersham)
- Reaction volume: 124 μL
- Slides are labeled on a GeneTAC hybridization station at 37 °C for 2 h with agitation
- After labeling, slides are washed consecutively with 2xSSC(0.1% SE followed by 2x SSC, and finally was
- The slides are centrifuged dry and immediately scanned

IGH Mouse oligos 5'-labeled with dCTP-Cy3 by Tdt method

otential advantages of oligos from MGH

Cost

- Our oligo sets will sell for ~\$25-30,000 per 700 pmol of DNA for a 14,000 gene mouse set
- This amount conservatively yields 3000 slides
- DNA cost is therefore \$8-10 per slide
- Open source oligo sequence database
- Improved annotation tools if set is adopted widely
- Incremental up-dating of sets
- Will include controls for printing and hybridization
- **Availability- completion expected Feb 1, 2003**

Contributors

- Shukui Guan, Ph.D.
- Sean Quinlan, M.S.
- Brian Seed, Ph.D.
- Glenn Short, Ph.D.
- Temple Smith, Ph.D.
- Dan Stetson, M.S.
- Xiaowei Wang, Ph.D.

- Karen Armstrong
- Jocelyn Burke
- Jamie Gregory
- Tara Holmes
- Melinda Lee
- Najib El Messadi
- Christine Ordija
- Jing Wang